Chapter 14: Inheritance 501

void £2 ()}
{
// .. can refer to members a, b, ¢, and functions f1, £2, and f3
}
public:
int c;
void £30()
{
// .. can refer to members a, b, ¢, and functions f1, f£2, and £f3

}
Yi

The data member a is private to class X and is accessible only to members of its own class, that is,
member functions £1 (), £2(), £3 () can access a directly. However, statements outside and even
member functions of the derived class are not allowed to access a directly. In addition, the member
function £1 () can be called only by other members of class X. The statements outside the class cannot
call £1 (), which is exclusively a private property of the class X.

The data member b and the member function £2 () are protected. These members are accessible to
other member functions of the class X and member functions in a derived class. However, outside the
class, protected members have private status. The statements outside the class cannot directly access
members b or £2 () using the class.

The data member c and the member function £3 () are public, and may be accessed directly by all
the members of the class X, or by members in a derived class, or by objects of the class. Public members
are always accessible to all users of the class.

The following statements,
X objx; // objx is an object of class X
int 4; // temporary variable d
define the object objx of the class X and the integer variable d. The member access privileges are
illustrated by the following statements referring to the object objx.

1. Accessing private members of the class X

d = objx.a; // Error: 'X::a' is not accessible

objx.£1(); // Error: 'x::£f1()' is not accessible
Both the statements are invalid because the private members of a class are inaccessible to the object
objx.

2. Accessing protected members of the class X

d = objx.b; // Error: 'X::b' is not accessible

objx.f2(); // Error: 'X::£2() ' is not accessible
Both the statements are invalid because the protected members of a class are inaccessible since they are
private to the class X.

3. Accessing public members of the class X

d = objx.c; // OK

objx.£3(); // CK
Both the statements are valid because the public members of 4 class are accessible to statements
outside the scope of the class.

502 Mastering C++

The program bag . cpp uses the access modifier protected to hold data members, instead of using
the private access specifier. It indicates that the protected members are inheritable to derived classes.
However, they have the same status as private members in the base class.

// bag.cpp: Bag into which fruits can be placed
#include <iostream.h>

enum boolean { FALSE, TRUE };

// Maximum number of items that a bag can hold
const int MAX_ITEMS = 25;

class Bag
{
protected: // Note: not private
int contents[MAX_ITEMS]; // bag memory area
int ItemCount; // Number of items present in a bag
public:
Bag () // no-argument constructor
{
ItemCount = 0; // When you purchase a bag, it will be empty
}

void put(int item) // puts item into bag
{

contents[ItemCount++] = item; // item into bag, counter update

}
boolean IsEmpty () // 1, if bag is empty, 0, otherwise
{
return ItemCount == 0 ? TRUE : FALSE;
}
boolean IsFull{() // 1, if bag is full, 0, otherwise
{

return ItemCount == MAX_ITEMS ? TRUE : FALSE;
}
boolean IsExist(int item);
void show();
}:
// returns 1, if item is in bag, 0, otherwise
boolean Bag::IsExist(int item)

{
for(int i = 0; i < ItemCount; i++)
if(contents([i] == item)
return TRUE;
return FALSE;
}

// display contents of a bag
void Bag: :show()
{
for(int i = 0; i < ItemCount; i++)
cout << contents[i] << " *;
cout << endl;

Chapter 14: Inheritance. 503

void main()
{
Bag bag:
int item;
while(TRUE)
{
cout << "Enter Item Number to be put into the bag <0-no item>: *;
cin >> item;
if(item == 0) // end of an item, break
break;
bag.put(item);
cout << "Items in Bag: ";

bag.show() ;
if(bag.IsFull())
{ .
cout << "Bag Full, no more items can be placed*:;
break;
}
}
}
Run

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 2

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 2 3

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 2 3 3

Enter Item Number to be put into the bag <0-no item>:
Ttems in Bag: 1 2 3 3 1

Enter Item Number to be put into the bag <0-no item>:

o P kW

In main (), the statement,
Bag bag;
creates the object bag and initializes the data member ItemCount to 0 through a constructor. The
statement
bag.put(item);
stores the items into the bag. It does not check for the entry of duplicate items into a bag. Any item type
can be placed any number of times into a bag and of course, without exceeding the limit or size of bag.

14.3 Derived Class Declaration

A derived class extends its features by inheriting the properties of another class, called base class and
adding features of its own. The declaration of a derived class specifies its relationship with the base
class in addition to its own features. The syntax of declaring a derived class is shown in Figure 14.2.
Naote that no memory is allocated to the declaration of a derived class, but memory is allocated when it
is instantiated to create objects. -

504 Mastering C++

—> derived class name

is derived from
— Inheritance type: public or private

’——bbase class name

class DerivedClass:[VisibilityMode] BaseClass

// members of derived class
// and they can access members of the base class

Figure 14.2: Syntax of derived class declaration

The derivation of DerivedClass from the BaseClass is indicated by the colon (:). The
VisibilityMode enclosed within the square brackets implies that it is optional. The default visibil-
ity mode is private. If the visibility mode is specified, it must be either public or private.
Visibility mode specifies whether the features of the base class are publicly or privately inherited.

The following are the three possible styles of derivation:

1. class D: public B // public derivation
{
// members of D
Y
2. class D: private B // private derivation

{
// members of D

Y
3. class D: B // private derivation by default
{
// members of D
}i

Inheritance of a base class with visibility mode public, by a derived class, causes public
members of the base class to become public members of the derived class and the protected
members of the base class become protected members of the derived class. Member functions and
objects of the derived class can treat these derived members as though they are defined in the derived
class itself. It is known that the public members of a class can be accessed by the objects of the class.
Hence, the objects of a derived class can access public members of the base class that are inherited as
public using the dot operator. However, prot ected members cannot be accessed with the dot opera-
tor. (See Figure 14.3.)

Inheritance of a base class with visibility mode private by a derived class, causes public
members of the base class to become private members of the derived class and the protected
members of the base class become private members of the derived class. Member functions and
objects of a derived class can treat these derived members as though they are defined in the derived
class with the private modifier. Thus objects of a derived class cannot access these members.

Chapter 14: Inheritance 5CS

class Base

» protected

.‘, public II"
class Derv: public Base jk
Base objB
i protected @
public
Derv objD

-

Figure 14.3: Access control of class members

Subsequent derivation of the classes from a privately derived class cannot access any members of
the grand-parent class. The visibility of base class members undergoes modifications in a derived class
as summarized in Table 14.1.

Derived class visibility
Base class visibility

Public derivation Private derivation
private Not Inherited Not Inherited

(inherited base class (inherited base class

members can access) members can access)
protected protected private
public public private

Table 14.1: Visibility of class members

The private members of the base class remain private to the base class, whether the base class is
inherited publicly or privately. They add to the data items of the derived class and they are not directly
accessible to the member of a derived class. Derived classes can access them through the inherited
member functions of the base class (see Figure 14.4).

506 Mastering C++

[—— — e
I .. ' E
I private data/function members of base class : ! 8 -
B 15
l ... ' E 3
| pmmee e e N P28
.) . hl l ‘Q—‘
! , protected/public . protected/public X | _s:) =
: 1 data « functions | Es
______________ e e e e e e oo
I TN s !
data/ functions D ow
< 43
data members of member functions of Sk
derived class derived class 2 E
3z

Figure 14.4: Members of derived class on inheritance

A Sample Program on Single Inheritance

A derived class may begin its existence with a copy of its base class members, including any other
members inherited from more distantly related classes. 4 derived class inherits data members and
member functions, but not the constructor or destructor Jrom its base class. Recall that the program,
bag. cpp discussed earlier has the class Bag and its instance, the bag object. A bag could be made
empty or filled with items (fruits). The Bag class can be subjected to set operations such as union.
intersection, etc.. It can be achieved by either modifying the Bag class or by deriving a new class called
Set from the Bag class as shown in Figure 14.5. o

class Bag

Bag Base class

4

class Set:public Bag Set Derived class

'F,igure 14.5: Inheritance of bag class

Considering that a large amount of time is spent in the development of the Bag class as well as in
testing and debugging, it is not-at-all advisable to extend the Bag class by modifying as it will be
impractical to rewrite or modify the original class especially in a large project when many programmers
are involved. Also such a change would not be possible if the Bag class is a part of a commercial class
library for which no source code is available to the user. Hence, rather than modifying Bag, a new class
Set can be derived from it and the required new features can be added. It saves development cost,
effort, and time.

Chapter 14: Inheritance 507

The program union.cpp demonstrates the. mechanism of extending the Bag class by using the
feature of inheritance. In this case, a new class Set is derived from the existing class Bag without any
modifications. A derived class Set inherits all the properties of the class Bag and extends itself by
adding some of its own features to support set assignment and union operation.

// union.cpp: Union of sets. Set class by inheritance of Bag class
#include <iostream.h>

enum boolean { FALSE, TRUE Y

const int MAX_ITEMS = 25; // Maximum number of items that bag can hold
class Bag

{

protected: // Note: not private
int contents[MAX_ITEMS]; // bag memory area
int ItemCount; // number of items present in the bag
public:
Bag () // no-argument constructor
{
ItemCount = 0; // When you purchase a bag, it will be empty
} .
void put(int item) // puts item into bag
{
contents|[ItemCount++] = item; // item into bag,counter update
}
boolean IsEmpty () // 1, if bag is empty, O, otherwise
{
return ItemCount == 0 ? TRUE : FALSE;
}
boolean IsFull() // 1, if bag is full, O, otherwise
{
return ItemCount == MAX_ITEMS ? TRUE : FALSE;
}

boolean IsExist(int item);

void show();
}i
// returns 1, if item is in bag, 0, otherwise
boolean Bag::IsExist(int item)

{
for(int i = 0; i < ItemCount; i++)
if(contents[i] == item)
return TRUE;
return FALSE;
}

// display contents of a bag
void Bag: :show()

{

for(int i = 0; i < ItemCount; i++)
cout << contents[i] << * LI
cout << endl;

508 Mastering C++

class Set: public Bag

{
public:
void add(int element)
{
if('IsExist(element) && 'IsFull())
put(element);
// element does not exist in set and it is not full
) .
void read();
void operator = (Set sl);
friend Set operator + (Set sl, Set s2);
Yi
void Set: :read()
{

int element;

while(TRUE)

({ .
cout << "Enter Set Element <0- end>: *;
cin >> element;

if(element == 0)
break;
add(element);
}
}
void Set::operator = (Set s2)
{
for(int i = 0; i < s2.ItemCount; i++)
contents[i] = s2.contents[i]; // access Bag::contents
ItemCount = s2.ItemCount;
}
Set operator + (Set sl, Set s2)
{
Set temp;
temp = sl; // copy all elements of set sl to temp

// copy those elements of set s2 into temp, those not exist in set sl
for(int i = 0; i < s2.ItemCount; i++)
{
if(!sl.IsExist(s2.contents[i])) //if element of s2 is not in sl
temp.add(s2.contents[i]); // copy the unique element
}
return{ temp);
i
void main()

{
' Set sl, s2, s3; // uses no-argument constructor of Bag class
cout << "Enter Set 1 elements .." << endl;
sl.read();
cout << "Enter Set 2 elements .." << endl;
s2.read();

s3 = sl + s2;

Chapter 14: Inheritance 509

cout << endl << "Union of s1 and s2 : ";
s3.show(}; // uses Bag::show() base class
)
Run
Enter Set 1 elements ..

Enter Set Element <0- end>: 1
Enter Set Element <0- end>: 2
Enter Set Element <0- end>: 3
Enter Set Element <0- end>: 4
Enter Set Element <0- end>: O
Enter Set 2 elements ..

Enter Set Element <0- end>: 2
Enter Set Element <0- end>: 4
Enter Set Element <0- end>: 5
Enter Set Element <0- end>: 6
Enter Set Element <0- end>: 9

Union of sl and s2 : 1 23 45 6

In the above program, the Set class has its own features to perform set union by using the member
functions of Bag. The statement
class Set: public Bag
derives a new class Set from the base class Bag. The base class Bag is publicly inherited by the
derived class set. Hence, the members of Bag class, that are protected become protected and
public become public in the derived class set. The Set class can treat all the members of the Bag
class as though they are its own.

The relationship between the base class Bag and the derived class Set has been depicted in Figure
14.5. Remember, that the arrow in the diagram, means derived from. The arrow indicates that the derived
class Set refers to the data and member functions of the base class Bag, while the base class Bag has no
access to the derived class Set.

Access to Constructor
In main{), the statement

Set sl, s2, s3; // uses no-argument constructor of Bag class
creates three objects s1, s2,and s3 of class Set and initializes the ItemCount variable to 0 in all
the three objects, even though a constructor does not exist in the derived class set. Thus, if a
constructor is not defined in the derived class, C++ will use an appropriate constructor from the base
class. In the above example, there is no constructor defined in the class Set and therefore, the compiler
uses the no-argument constructor

Bag () /, no-argument constructor

{
ItemCount = 0; // When you purchase a bag, it will be empty

}
defined in the Bag class. The use of the base class’s constructor, in the absence of a constructor in the
derived class, exhibits the true nature of inheritance that happens normally in day-to-day life.

510 Mastering C++

Base Class Unchanged

It may be recalled that the base class remains unchanged even if other classes have been derived from
it. In main () of the program union. cpp, objects of type Bag could be defined as,

Bag bag; // object of the base class
Behaviors of such objects remain the same irrespective of the existence of a derived class such as Set.

It should also be noted that inheritance does not work in reverse. The base class and its objects do
not know about any classes derived from it. In the example union. cpp, the objects of the base class
Bag, cannot use the function, operator+ () of the derived class Set.

Accessing Base Class Member Functions
The object s3 of class Set also uses the function show () from the base class Bag. The statement
s3.show{); // uses Bag::show() base class

in the main (), refers to the function show (), which does not exist in the derived class Set. It is
resolved by the compiler by selecting the member function show () defined in the base class Bag.

14.4 Forms of Inheritance

The derived class inherits some or all the features of the base class depending on the visibility mode
and level of inheritance. Level of inheritance refers to the length of its (derived class) path from the root
(top base class). A base class itself might have been derived from other classes in the hierarchy.
Inheritance is classified into the following forms based on the levels of inheritance and interrelation
among the classes involved in the inheritance process:

« Single Inheritance
~ e Multiple Inheritance
« Hierarchical Inheritance
« Multilevel Inheritance
+ Hybrid Inheritance
+ Multipath Inheritance
The different forms of inheritance relationship is depicted in Figure 14.6. The pictorial representa-
tion of inheritance showing the interrelationship among the classes involved is known as the inherit-
ance tree or class hierarchy. Base classes are represented at higher levels (top of the hierarchy, say root)
and derived classes at the bottom of the hierarchy. The arrow directed from the derived class towards
the base class, indicates that the derived class accesses features of the base class without modifying it,
but not vice versa (Some use convention of representing the arrow in the opposite direction to indicate
inherited from or derived from).
Single Inheritance: Derivation of a class from only one base class is called single inheritance. The

sample program, union. cpp, discussed above falls under this category. Figure 14.6a depicts single
inheritance.

Multiple Inheritance: Derivation of a class from several (two or more) base classes is called multiple
inheritance. Figure 14.6b depicts multiple inheritance.

Hierarchical Inheritance: Derivation of several classes from a single base class i.e., the traits of one
class may be inherited by more than one class, is called hierarchical inheritance. Figure 14.6¢ depicts
hierarchical inheritance.

Chapter 14: Inheritance s1l

Multilevel Inheritance: Derivation of a class from another derived class is called multilevel inherit-
ance. Figure 14.6d depicts multilevel inheritance.

Hybrid Inheritance: Derivation of a class involving more than one form of inheritance is known as
hybrid inheritance. Figure 14.6e depicts hybrid inheritance.

Multipath Inheritance: Derivation of a class from other derived classes, which are derived from the
same base class is called multipath inheritance. Figure 14.6f depicts multipath inheritance.

a) Single inheritance ' b) Multiple inheritance ¢) Hierarchical inheritance ‘

_@ | | ,___,

d) Multilevel inheritance €) Hybrid inheritance f) Multipath inheritance

Figure 14.6: Forms of inheritance

145 Inheritance and Member Accessibility

The examples discussed earlier demonstrated the features of inheritance, which enhances the capabili-
ties of the existing classes without modifying them. It is also observed that the private members of
a base class, which cannot be inherited, are overcome by the use of access specifier protected.
Accessibility refers to the authorization granted to access the members of a class by using an access
specifier or modifier with or without inheritance. It defines the guidelines.as to when a member function
in the base class can be used by the objects of the derived class. ‘

A protected member can be considered as a hybrid of a private and a public member. Like private
members, protected members are accessible only to its class member functions and they are invisible
outside the class. Like public members, protected members are inherited by derived classes and are also
accessible to member functions of the derived class. The following rules are to be borne in mind while
deciding whether to define members as private, protected, or public:

1. A private member is accessible only to members of the class in which the private member is declared.
They cannot be inherited.

2 A private member of the base class can be accessed in the derived class through the member
functions of the base class.

512 Mastering C++

3. A protected member is accessible to members of its own class and to any of the members in a derived
class.

4.If aclass is expected to be used as a base class in future, then members which might be needed in the
derived class should be declared protected rather than private.

5. A public member is accessible to members of its own class, members of the derived class, and outside
users of the class.

6. The private, protected, and public sections may appear as many times as needed in a class and in any
order. In case an inline member function refers to another member (data or function), that member
must be declared before the inline member function is defined. Nevertheless, it is a normal practice to
place the private section first, followed by the protected section and finally the public section.

7. The visibility mode in the derivation of a new class can be either private or public.

8. Constructors of the base class and the derived class are automatically invoked when the derived
class is instantiated. If a base class has constructors with arguments, then their invocations must be
explicitly specified in the derived class’s initialization section. However, no-argument constructor
need not be invoked explicitly. Remember that, constructors must be defined in the public section of
a class (base and derived) otherwise, the compiler generates the error message: unable to access
constructor.

Consider the following declarations of the base class to illustrate public and private inheritance:

class B // base class
{
private:
int privateB; // private member of base
protected:
int protectedB; // protected member of base
public:
int publicB; // public member of base
int getBprivate()
{
return privateB;
}
}i

Public Inheritance

Consider the following declaration to illustrate the derivation of a new class D from the base class B
publicly declared earlier:

class D: public B // publicly derived class
{
private:
int privateD;
_protected:
‘int protectedD;
public:
int publicD;
void myfunc{()
{

int a;

Chapter 14: Inheritance 513

a = privateB; // Error: B::privateB is not accessible

a = getBprivate(); // OK, inherited member accesses private data
a = protectedB; // OK

a = publicB; // OK

~—

}i

The member function, myfunc () of the derived class D can access protectedB and publicB
inherited from base class B. Since the class B is inherited as public by the derived class D, the status
of members protectedB, publicB, getBprivate() remain unchanged in the derived class D.
The-statements

D objd; // objd is a object of class D

int 4; // temporary variable d
define the object objd and the integer variable d. Consider the following statements referring to the
object ob3jd. Access to the protected member of the base class B in the statement,

d = objd.protectedB; // Error: ‘B::protectedB' is not accessible
is invalid; protecteds has protected visibility status in class D. However the public member of the
class B in the statement

d = objd.publicB; // OK
is valid; publicB has public visibility status in class D. The inherited member function,
getBprivate () in the statement

d = objd.getBprivate(); / /0K, inherited member accesses private data
accesses a private data member of the base class.

In a subsequent derivation such as

class X : public D
I

public:
void g();
}i
the member functiong () in the derived class X may still access members protectedBandpublicB
and even retains the original protected and public status. Note that, private members of the classes B
and D can be accessed through inherited members of the base class.

Private Inheritance

Consider the following declaration to illustrate the derivation of the new class D from the existing base
class B privately:

class D: private B // privately derived class
{
private:
int privateD;
protected:
int protectedD;
public:
int publicD;

514 Mastering C++

void myfunc ()

{

int a;

a = privateB; // Error: B::privateB is not accessible

a = getBprivate(); // OK,inherited member accesses private data
a = protectedB; // OK

a =

publicB; // OK

}i

The member function myfunc () of the derived class D may access protectedB and publicB
inherited from the base class B. Sirice, the base class B is inherited as the private base class of the
derived.class ‘D, the status of members protectedB, publicB, and getBprivate () become
private in the derived class D. The statements

D objd; // objd is a object of class D

int d4d; // temporary variable d
define the object objd and the integer variable d. Consider the following statements referring to the
object objd. Access to'the protected member of the base class B in the statement

d = objd.protectedB; // Error: B::protectedB is not accessible
is invalid; protectedB has private visibility status in the class D. Access to the public member

of class B in the statement

d = objd.publicB; // Error: B::publicB is not accessible

is also invalid; publicB has private visibility status in the class D. The use of inherited member
function, getBprivate () in the statement

d = objd.getBprivate(); // Error: getBprivate() is not accessible
is invalid; it has become a private member of the derived class D, however, a member function of the
derived class can access—myfunc () accesses getBprivate() function.

In a subsequent derivation such as

class X : public D // X is derived with D as base class
{
public:
void g();

}i
the member function g () in X cannot access members protectedB and publicB since these
members have gainedprivate visibility status in class D. However, they (including private members
of the classes B and D) can be accessed through inherited members of the base class.

Member Functions Accessibility

The various categories of funciions which have access to the private and protected members could be
any of the following:

+ amember function of a class

« amember function of a derived class

+ afriend function of a class

+ amember function of a friend class

Chapter 14: Inheritance 515

7 Access directly to
Function Type
Private Protected Public
Class Member Yes Yes Yes
Derived class member No Yes “Yes
Friend Yes Yes Yeé
Friend class member Yes Yes Yes

Table 14.2: Access control to class members

The friend functions and member functions of a friend class have direct access to both the private
and protected members of aclass. A member function of a class has access to all the members of its own
class, be it private, protected, or public. The member functions of a derived class can directly access
only the protected or public members: however they can access the private members through
the member functions of the base class. Table 14.2 and Figare 14.7 summarizes the scope of access in
various situations.

class B
private
p protected [«
public
Y
class D1 : public B class D2 : private B
private private
5| protected protected |e
public public
X 3
class X : public D1, public D2
private
protected
public

Figure 14.7: Access mechanism in classes

£16 Mastering C++

14.6 Constructors in Derived Classes

The constructors play an important role in initializing an object’s data members and allocatin g required
resources such as memory. The derived class need not have a constructor as long as the base class has
a no-argument constructor. However, if the base class has constructors with arguments (one or more),
then it is mandatory for the derived class to have a constructor and pass the arguments to the base
class constructor. In the application of inheritance, objects of the derived class are usually created
instead of the base class. Hence, it makes sense for the derived class to have a constructor and pass
arguments to the constructor of tic base class. When an object of a derived class is created, the
constructor of the base class is executed first and later the constructor of the derived class.

The following examples illustrate the order of invocation of constructors in the base class and the
derived class.

1. No-constructors in the base class and derived class

When there are no constructors either in the base or derived classes, the compiler automatically creates
objects of classes without any error when the class is instantiated.

// consl.cpp: No-constructors in base class and derived class
#include <iostream.h>
class B // base class
{
// body of base class, without constructors
}i
class D: public B // publicly derived class
{
// body of derived base class, without constructors
public:
void msg ()
{
cout << "No constructors exists in base and derived class" << endl;
}
}i
void main()
{
D objd; // base constructor
objd.msg();
}

Run

No constructors exists in base and derived class

2. Constructor only in the base class

// cons2.cpp: constructor in base class only
#include <iostream.h>
zlass B // base class
{
public:

Chapter 14: Inheritance 517

B()
{

cout << "No-argument constructor of the base class B is executed";
}
}i
class D: public B // publicly derived class
{
public:
}i
void main()
(

D objl; // accesses base constructor
}

‘Run

No-argument constructor of the base class B is executed

3. Constructor only in the derived class

// cons3.cpp: constructors in derived class only
#include <iostream.h>

class B // base class
{
// body of base class, without constructors
}i .
class D: public B // publicly derived class
{
// body of derived base class, without constructors
public:
D()
{
cout << "Constructos exists in only in derived class" << endl;
}
}q
void main()
{
D objd; // accesses derived constructor
}
BRun

Constructos exists in only in derived class

4. Constructor in both base and derived classes

// consd.cpp: constructor in base and derived classes
#include <iostream.h>
‘class B // base class

{
public:

518 Mastering C++

B()
{
cout<<"No-~argument constructor of the base class B executed first\n*;
}
}:
class D: public B // publicly derived class
{
public:
D()
{
cout<<"No-argument constructor of the derived class D executed next";
}
}:
void main{()
{
D objd; // access both base constructor
}

Bun

No-argument constructor of the base class B executed first
No-argument constructor of the derived class D executed next

5. Multiple constructors in base class and a single constructor in derived class

// cons5.cpp: multiple constructors in base and single in derived classes
#include <iostream.h>
class B // base class
{
public:
B() { cout << "No-argument constructor of the base class B"; '}
B(int a) { cout <<"One-argument constructor 6f the base class B"; }
¥
class D: public' B // publicly derived class
{
public:
D(int a)
{ cout << *\nOne-argument constructor of the derived class D"; }
}:
void main()
{
D objd(3);
}

Run
No-argument constructor of the base class B
One-argument constructor of the derived class D .

6. Constructor in base and derived classes without default constructor

The compiler looks for the no-argument constructor by default in the base class. If there is a constructor
in the base class, the following conditions must be met:

+ The base class must have a no-argument constructor

Chapter 14: Inheritance 519

« If the base class does not have a default constructor and has an argument constructor, they must be
explicitly invoked, otherwise the compiler generates an error.

// cons6.cpp: constructor in base and derived class
#include <iostream.h>

class B // base class
{
public:
B(int a) { cout << "One-argument constructor of the base class B"; }
}i
class D: public B // publicly derived class
{
public:
D(int a)
{ cout << "\nOne-argument constructor of the derived class D"; }
};
void main()
{
D objd(3);
}

The compilation of the above program generates the following error:
cannot find 'default' constructor to initialize base class 'B’

This error can be overcome by explicit invocation of a constructor of the base class as illustrated in the
program cons7.cpp.

7. Explicit invocation in the absence of default constructor

// cons7.cpp: constructor in base and derived classes
#include <iostream.h>

class B // base class
{
public:
B(int a)
{ cout << "One-argument constructor of the base class B*; }
};
class D: public B // publicly derived class
{
public:
D(int a) : B(a)
{ cout << "\nOne-argument constructor of the derived class D"; }
Yi
void main{()
{
D objd(3)
}
Run

One-argument constructor of the base class B
One-argument constructor of the derived class D

520 Mastering C++

In the derived class D, the statement
D(int a):B(a)
defines the derived class constructor D(int a) and calls the constructor of the base class using the

special form :B(a). Here, the constructor of B is first invoked with an argument a specified in the
constructor function D and then the constructor of D is invoked.

8. Constructor in a multiple inherited class with default invocation

// consB.cpp: constructor in base and derived class, order of invocation
#include <iostream.h>

class Bl // base class
{

public:

Bl() { cout << *\nNo-argument constructor of the base class Bl";)}

};
class B2 // base class
{

public:

B2 () { cout << "\nNo-argument constructor of the base class B2"; }
);
class D: public B2, public B1 // publicly derived class
{
public:
D()
{ cout << "\nNo-argument constructor of the derived class D"; }
}:
void main()
{
D objd;
}

Bun
No-argument constructor of the base class B2

No-argument constructor of the base class Bl
No-argument constructor of the derived class D

The statement
class D: public B2, public Bl // publicly derived class

specifies that the class D is derived from the base classes B1 and B2 in order. Hence, constructors are
invoked in the order B2 (), B1(), and D{(); the constructors can be defined with or wjthout argu-
ments.

9. Constructor in a multiple inherited class with explicit invocation

// cons9.cpp: constructors with explicit invocation
#include <iostream.h>
class Bl " // base class
{
public:
Bl() { cout << '\nNo—argument constructor of the base class Bl";)
};

Chapter 14: Inheritance 521

class B2 // base class
(‘
public:
B2() { cout << "\nNo-argument constructor of the base class B2"; }

jass D: pubiic B1, public B2

-

public:
D(): B2Y), B1() // explicit call to constructors
{ cout << "\nNo-argument constructox of the derived class D"; }
}:
void main()
{
D objd;
}

Run

No-argument constructor of the base class Bl
No-argument constructor of the base class B2
No-argument constructor of the derived class D

In the above program, the statement
class D: public Bl, public B2 // publicly derived class
specifies that, the class D is derived from the base classes B1 and B2 in order. The statement
D(): B2(), B1()
in the derived class D, specifies that, the base class constructors must be called. However, the con-
structors are invoked in the order B1 (), B2, and D, the order in which the base classes appear in the
declaration of the derived class.

10. Constructor in base and derived classes in multiple inheritance

// cons10.cpp: constructor in base and derived classes, order of invocation
#include <iostream.h>
class Bl // base class
{
public:
B1() { cout << »\nNo-argument constructor of the base class Bl"; }
};

class B2 // base class
{

public:

B2() { cout << "\nNo-argument constructor of a base class B2"; }

};:
class D: public B1, virtual B2 // public Bl, private virtual B2
{

public:

D(): BL(), B2()
{ cout << "\nNo-argument constructor of the derived class D"; }

522 Mastering C++

void main()

{

D objd; // base constructor
}
Run

No-argument constructor of a base class B2
No-argument constructor of the base class Bl
No-argument constructor of the derived class D

The statement
class D: public Bl, virtual B2 // public Bl, private virtual B2
specifies that the class D is derived from the base classes B1 and B2. The statement
D():B1(), B2()

in the derived class D, specifies that, the base class constructors must be called. However, the con-
structors are invoked in the order B2 (),B1, and D(), instead of the order in which base classes
appear in the declaration of the derived class, since, the virtual base class constructors are invoked first
followed by an orderly invocation of constructors of other classes.

11. Constructor in multilevel inheritance

// consll.cpp: constructor in base and derived classes, order of invocation
#include <iostream.h>
class B // base class
{

public:

B{) { cout << "\nNo-argument constructor of a base class B";)}

}i
class Dl1: public B // derived class
{

public:
D1(}) { cout << "\nNo-argument constructor of a base class D1"; }
}i
class D2: public D1 // publicly derived class
{
public:
D2 ()
{ cout << *\nNo-argument constructor of a derived class D2"; }
}i

void main()
{
D2 objd; // base constructor

};
Run

No-argument constructor of a base class B
No-argument constructor of a base class D1
No-argument constructor of a derived class D2

Chapter 14: Inheritance 522

The statement
class D2: public D1 // publicly derived class

specifies that the class D2 is derived from the derived class D1 of B. The constructors are invoked in
the order B (), D1 (), and D2 () corresponding to the order of inheritance.

In the derived class, first the constructors of virtual base classes are invoked, second any non-
virtual classes, and finally the derived class constructor. Table 14.3 shows the order of invocation of
constructors in a derived class.

Method of Inheritance Order of Execution
class D: public B B(): base constructor
{ D(): derived constructor
}i
class D: public B1, publlc B2 Bl(): base constructor
{ B2(): base constructor
} o D(): derived constructor
class D: public Bl, virtual B2 B2(): virtual base constructor
{ B1(): base constructor
) . D(): derived constructor
class D1: public B
{
}:
class D2: public D1 B(): super base constructor
{ D1(): base constructor
} o D2(): derived constructor

Table 14.3: Order of invocation of constructors

14.7 Destructors in Derived Classes

Unlike constructors, destructors in the class hierarchy (parent and child class) are invoked in the
reverse order of the constructor invocation. The destructor of that class whose constructor was ex-
ecuted last, while building object of the derived class, will be executed first whenever the object goes
out of scope. If destructors are missing in any class in the hierarchy of classes, that class’s destructor
is not invoked. The program cons12.cpp illustrates the order of invocation of constructors and
destructors in handling instances of a derived class.

524 Mastering C++

// cons12.cpp: order of invocation of constructors and destructors
#include <iostream.h>

class Bl // base class
{
public:
Bl() { cout << "\nNo-argument constructor of the base class Bl";)}
~B1()
{
cout << "\nDestructor in the base class Bl";
}
}:
class B2 // base class
{
public:
B2() { cout << "\nNo-argument constructor of the base class B2"; }
~B2 ()
{
cout << "\nDestructor in the base class B2*;
}
}:

class D: public Bl, public B2 // publicly derived class
{
public:
D()
{ cout << '\nNo-argument constructor of the derived class D"; }
~D()
{
cout << "\nDestructor in the base class D";
}
}:
void main()
{
D objd;
}

Run

No-argument constructor of the base class Bl
No-argument constructor of the base class B2
No-argument constructor of the derived class D
Destructor in the base class D

Destructor in the base class B2

Destructor in the base class Bl

Note that, in this program the constructors are invoked in the order of B1 () ,B2() , D() whereas,
the destructors are invoked in the order of D() , B2 () ,B1 (), which is in reverse order.

In case of dynamically created objects using the new operator, they must be destroyed explicitly by
invoking the delete operator. More specialized class’s (which are at the bottom of t?e hierarchy)
destructors are called before a more general one (which are at the top of the hierarchy)..As usual, no
arguments can be passed to destructors, nor can any return type be declared.

Chapter 14: Inheritance 52§

14.8 Constructors Invocation and Data Members Initialization

In multiple inheritance, the constructors of base classes are invoked first, in the order in which they
appear in the declaration of the derived class, whereas in the case of multilevel inheritance, they are
executed in the order of inheritance. Itis the responsibility of the derived class to supply initial values
to the base class constructor, when the derived class objects are created. Initial values can be supplied
either by the object of a derived class or a constant value can be mentioned in the definition of the
constructor. The syntax for defining a constructor in a derived class is shown in Figure 14.8.

—— Constructor name: derived class name

Separator for derived and base class constructors
Base class1 constructor
’——-' Arguments
—_— .

DerivedClass (arg_list) :Basel (arg_listl),Base2{arg_list2)..,BaseN (arg_listM)
{

// body of the constructor of derived class
};

Figure 14.8: Syntax of derived class constructor

The parameters arg_listl, arg_list2, .., arg_listM are the list of arguments passed to the constructor
or they can be any constant value those match with the arguments of the constructor list of base
classes.

C++ supports another method of initializing the objects of classes through the use of the initializa-
tion list in the constructor function. It facilitates the initialization of data members by specifying them
in the header section of the constructor. The general form of this method is shown in Figure 14.9.

—» Derived class constructor name

Separator for derived class constructor and

initialization section

——> Initialization of data members and
invocation of base class constructors

__ S

/ »
DerivedClass(arg_list) : InitializationSection
{

// body of the constructor of derived class
Yi

Figure 14.9: Syntax of initialization at derived class constructor

Data member initialization is represented by
DataMemberName (value)
The data members (DataMemberName) to be initialized are followed by the imuanzauon value enclosed

526 Mastering C++

in parentheses (resembles a function call). The value can be arguments of a constructor, expression or
other data members. In the initialization section, any parameter of the argument-list can be used as an
witialization value. The data member to be initialized must be a member of its own class. The program
censl4. cpp illustrates the use of initialization section of the constructor. The following rules must

be noted about the initialization and order of invocation of constructors:

« The initialization statements (in the initialization section) are executed in the order of definition of data

members in the class.

+ Constructors are invoked in the order of inheritance. However, the following rules apply when class
is instantiated: first, the constructors of virtual base classes are invoked, second, any non-virtual

classes, and finally, the derived class constructor.

/ / cons13.cpp: data members initialization through initialization-section

#include <iostream.h>

class B
{
protected:
int x, y;
public:

B(int a, int
)i
class D: public B
{
private:
int a, b;
public:
D(int p, int
void output ()
{
cout << "x =
cout << "y =
cout << "a =
cout << "b =

};
void main()

{

b):

a,

D objb(5, 10, 15);

objb.output () ;

}

Run

x =5
y = 10
a=>5
b = 15

The constructor statement in the class B
B(int a, int b): x(a), y(b)

// base class

x(a),

y (b)

{} // x

// derived class

int

<<
<<

Lo 2 VL S

r):

<<
<<
<<

a(p),

endl;
endl;
endl;
endl;

B(p, g), b(r) {}

(Y 7/ x

a, y=>o

Chapter 14: Inheritance 527

initializes the data members x and y to a and b respectively. The constructor statement in class D
D(int p, int q, int r): a(p), B(p, q), b(r) {}

initializes the data members a and b to p and r respectively. It invokes the constructor B (int, int)

of the base class B.

Consider the following declaration of class to illustrate the order of initialization:

class B // base class
{
private:
int x, vy
public:

B(int a, int b): x(a), y(b) {} // x=a, y =D
}i

Assume, the constructor of the class B is rewritten for illustration and object objb is defined as
B objb(5, 10);
The following examples illustrates the initialization of data members with different formats:

1. B(int a, int b): x(a), y(a+b)

The data member x is assigned the value a and y is assigned the value of the expression (a+b),ie., x=
Sandy=(5+10)=15.

2. B(int a, int b): x(a), Y(x+b)

The data member x is assigned the value of a and y is assigned the value of the expression (x+b), i.e.,
x = 5 and y = (5+10) = 15. Note that the newly initialized data member can also be used in further
initializations.

3. B(int a, int b): y(a), x(y+b)

It produces a wrong result, because, the statement which initializes the data member x is the first one to
be executed (x is defined first data member in the class B). Hence the computation x (y+b) (i.e x=y+b)
produces a wrong result because the data member y is not yet initialized. The program runtime. cpp
illustrates this case. Thus, the order of data members in the initialization list is important.

// runtime.cpp: initialization through constructor header
#include <iostream.h>
class B
{
private:
int x, v
public:
B(int a, int b): y(a), x(y+b) {} // No compilation, but run-time
void print()
{
cout << X << endl;
cout << y << endl;

S28 Mastering C++

void main()

!
L

B b(2, 3);
-.b.print();

—~

Run
4211
2

The compiler converts the constructor of the class B into the following form:

B(int a, int b)
{
X
Y

(y+b};
aj;

}
In the above converted constructor, it should be noted that the statement
x = (y+b);
refers to the data membery which is still not initialized. Hence, the program produces the wrong result.

14.9 Overloaded Member Functions

The members of a derived class can have the same name as those defined in the base class. An object
of a derived class refers to its own functions even if they are defined in both the base class and the
derived class. The program cons14 . cpp illustrates the overloaded data and member functions in the
base and derived classes.

// consl4.cpp: overloaded members in base and derived classes
#include <iostream.h>
class B // base class
{
protected:
int x;
int y;
public:
B() {})
void read()
{
cout << "X in class B ? *;
cin >> Xx;
cout << "Y in class B ? “;
cin >> y;
Y
void show()
{
cout << "X in class B = " << x << endl;
cout << "Y in class B = " << y << endl;

Chapter 14: Inheritance 529

class D: public B // publicly derived class
{
protected:
int y;
int z;
public:
void read()
{
B::read(); // read base class data first
cout << "Y in class D ? ";
cin >> yi
cout << "Z in class D ? ";
cin >> z;
Y
void show()
{
B::show(); // display base class data first
cout << "Y in class D " << y << endl;
cout << "Z in class D = " << z << endl; }
cout<<"Y of B, show from D = "<< B::v: //refers toy of class B
}i

"

Yio

void main ()

{
D objd;
cout << "Enter data for object of class D .." << endl;
objd.read();
cout << "Contents of object of class D .." << endl;
objd.show();

}

Run

Enter data for object of class D ..
X in class B ? 1

Y in class B ? 2

Y in class D ? 3

Z in class D ? 4

Contents of object of class D ..
X in class B = 1

in class B 2

in class D = 3

in class D = 4

of B, show from D. = 2

KN

In the derived class, there can also be functions with the same name as those in base class. It results
in ambiguity. The compiler resolves the conflict by using the following rule:

If the same member (data/function) exists in both the base class and the derived class, the member
in the derived class will be executed.

The above rule is true for derived classes. Objects of the base class do not know anything about the

530 Mastering C++

derived class and will always use the base class members. Consider the statements

objd.read() ;
objd.show()

in functionmain (). In the first statement, objd, the object of a class D, invokes the read () function
defined in the class D, instead of the read () function of the class B. Similarly, the function show ()
referenced by the ob3jd uses the function defined in the class D.

Scope Resolution with Overriding Functions
The statement in class D
B::read(); // read base class data first

refers to the function read () defined in the base class B due to the use of scope resolution operation.
Similarly, the statetnent

B::show(); // display base class data first
in the function show () of derived class D refers to the show () function of the base class B.

The statement
cout << "Y of B, show from D = " << B::y; // refers to y of class B

in the function show () has B::y, which refers to the data member defined in the base class B and not
the one defined in the derived class D. These features of C++ demonstrates the creation of powerful
functions using primitive functions. The general format of scope resolution for class members is shown
in Figure 14.10.

Name of a class
Scope resolution operator

—— Name of the member
function to be Invoked

/_—-—-—"'\
ClassName :: MemberName ()

Figure 14.10: Syntax of member function access through
scope resolution operator

For instance, as in the following statements

B: :read() refers to the member function read () defined in the class B
B: :y refers to the data member y defined in the class B

prefixing the class name to the member separated by scope resolution operator :: informs the compiler
to call the member function specified in the class B.

Inheritance in the Stack Class

The various programs discussed so far, belong to the category of single Inheritance. Another practical

example of inheritance is the stack, which is the most popularly used data-structure in building compil-

ers, execution of recursive programs, allocating storage for local variables, and so on. The stack oper-

ates on the principle of Last-In-First-Out, popularly called LIFO policy. The last item entered into the
‘ack is the first one to come out as shown in Figure 14.11.

Chapter 14: Inheritance 531

The program stack . cpp has two classes, Stack as the base class and MyStack as the derived
class of Stack. The base class Stack models a stack as a simple data storage device. It allows to push
integers onto the stack and pop them off. However, it has a potential flaw. It does not check for the
underflow or overflow that occurs in the manipulation of a stack. The program might not work since data
would be placed in memory beyond the end of the stack[] array. Trying to pop too many items from
the stack results in popping out meaningless data since, it would be reading data from memory locations
outside the array.

Pop
A

Top Object

)= (2

|
i ()

Push
Figure 14.11: Stack operations

The potential flaw, in the class stack can be overcome by developing a new class MyStack, a
derived class inherited from the old stack class Stack. Objects of MyStack operate exactly the same
way as those of Stack, except that it will issue a warning if an attempt is made to push an item onto a
stack which is already full, or try to pop items out of an empty stack.

// stack.cpp: overloading of functions in base and derived classes
#include <iostream.h>
const int MAX_ELEMENTS = 5; // maximum size of stack, you can change this

class Stack // base class
{
protected: // Note: cannot be private
int stack[MAX_ELEMENTS + 11; // for stack[l]..stack[MAX_ELEMENTS]
int StackTop; // It points to current stack top element
public:
stack()
{
StackTop = 0; // Initially no elements in stack, stack empty
}
void push(int element)
{
++StackTop; // Update StackTop for new entry
stack[StackTop] = element; // put element into the stack
}
void pop(int &elemeni)
{

element = stack[StackTop 1;
--StackTop; // Update StackTop to point to next element

532 Mastering C++

// derivation of a new class from the class Stack
class MyStack : public Stack

{
public:
int push(int element) // return 1, if success, 0 otherwise
{
if(StackTop < MAX_ELEMENTS) // if stack is not full
{
Stack: :push(element); // calls base class push
return 1; // push successful
}
cout << "Stack Overflow" << endl;
return 0; // stack overflow
}
int pop(int & element) // return 1, if success, 0 otherwise
{
if(StackTop > 0) // if stack is not full
{
Stack: :pop(element); // calls base class pop
return 1; // pop successful
}
cout << "Stack Underflow" << endl;
return 0; // stack underflow
}
}:

void main{()
{
MyStack stack;
int element;
// push elements into Stack until it overflows
cout << "Enter Integer data to put ‘into the stack ..." << endl;
do
{
cout << "Element to Push ? *;
cin >> element;

}

while(stack.push(element)); // push and check for overflow
// pop all elements from stack

cout << “The Stack Contains ..." << endl;

while(stack.pop(element))
cout << "pop: " << element << endl;

}

Bun
Enter Integer data to put into the stack ...
Element to Push ?
Element to Push
Element to Push
Element to Push
Element to Push
Element to Push

oy kb b ko O =

[ROREN B R eV]

Chapter 14: Inheritance 533

Stack Overflow
The Stack Contains ...

pop: 5
pop: 4
pop: 3
pop: 2
pop: 1

Stack Underflow

14.10 Abstract Classes

In order to exploit the potential benefits of inheritance, the base classes are improved or enhanced
without modifications, which results in a derived class or inherited class. The objects created «ften are
the instances of a derived class but not of the base class. The base class becomes just the fouridation
for building new classes and hence such classes are called abstract base classes or abstruci classes.
An abstract class is one that has no instances and is not designed to create objects. An abstract class
is only designed to be inherited. It specifies an interface at a certain level of inheritance and provides a
framework, upon which other classes can be built.

In'the previous example (stack.cpp), the class Stack serves as a framework for building the
derived classes and it is treated as a member of the derived class MyStack. The abstract class is the
most important class and normally exists at the root of the hierarchy; it is a pathway to extending the
system. Hence, the class Stack is sometimes loosely called as abstract class or abstract base class,
meaning that no actual instances (objects) of these classes are created. However, abstract classes, in
addition to inheritance, have more significance in connection with virtual functions, which will be
discussed later in the chapter on Virtual Functions.

Abstract classes have other benefits. It provides a framework upon which other classes can be built
and need not foliow the trick of C (language, C++’s base class) programming. Most of the C program-
mers follow tricks of creating skeleton code and then copying and modifying the skeleton to create new
functionality. One problem with skeleton code is if any modification is done to skeleton code, the
changes must be propagated manually throughout the system -- an error prone process at best. In
addition, it is difficult to find out whether bugs are in original skeleton or in modified system versions.
By using abstract classes, interface can be changed which immediately propagate changes throughout
the system with no errors. All changes made by the programmer in the derived classes are shown
explicitly in the code, any bugs that show up are almost isolated in the new code.

14.11 Multilevel Inheritance

Derivation of a class from another derived class is called multilevel inheritance. It is very common in
inheritance that a class is derived from a derived class as shown in Figure 14.12. The class Bis the base
class for the derived class D1, which in turn serves as a base class for the derived class D2. The class
D1 provides a link for the inheritance between B and D2, and is known as intermediate base class. The
‘chain B, D1, D2 is known as the inheritance path.

A derived class with multilevel inheritance is declared as follows:

class B { ... }i // Base class
class D1: public B() /7 D1 derived from B

534 Mastering C++

class D2: public D1{) // D2 derived from D1
The multilevel inheritance mechanism can be extended to any number of levels.

class B Base Class B

class Dl:public D Derived Class D1
(Intermediate base class)

class D2:public Bl Derived Class D2

Figure 14.12: Multilevel inheritance

The inheritance relation shown in Figure 14.13 is modeled in the program exam. cpp. It consists of
three classes namely, person, student, and exam. Here, the class person is the base class, student is the
intermediate base class, and exam is the derived class. The student class inherits the properties of
person class whereas, the exam class inherits the properties of the student class (directly) and
properties of the person class (indirectly).

class student:public person student

class exam:public student m

Figure 14.13: Multilevel inheritance

// exam.cpp: Models Examination database using Inheritance
#include <iostream.h>

const int MAX_LEN = 25; // maximum length of name
class person

{

private: // Note: cannot be referred by derived class
char name[MAX_LEN]; // person name
char sex; // person sex, M - male, F - female

int age; // person age

public:

void ReadData()

{
cout << "Name ? ";
cin >> name;
cout << "Sex ? ";
cin >> sex;
cout << "Ag> ? ";
cin >> age;

name << endl;
sex << endl;
age << endl;

Chapter 14: Inheritance

: public person // publicly derived intermediate-base class

// student roll number in a class

char branch[20]; // branch or subject student is studying

// uses ReadData of person class

// uses DisplayData of person class

}
void DisplayData ()
{
cout << "Name: " <<
cout << "Sex : " <<
cout << "Age : " <<
}
}i
class student
(
private:
int RollNo;
public:
void ReadData ()
(
person: :ReadDatal() ;
cout << "Roll Number ? ";
cin >> RollNo;
cout << "Branch Studying ? *;
cin >> branch;
}
void DisplayData ()
{
person::DisplayData();
cout << "Roll Number: " << RollNo << endl;
cout << "Branch: " << branch << endl;
)
}i

class exam: public student
{
protected:
int SublMarks;
int Sub2Marks;
public:
void ReadData ()
(

student: :ReadDatal() ;

// derived class

// uses ReadData of student class

cout << "Marks Scored in Subject 1 < Max:100> ? *;

cin >> SublMarks;

cout << "Marks Scored in Subject 2 < Max:100> ? *;

535

536

}

Mastering C++

cin >>

Sub2Marks;

void DisplayData ()

{

}

student
cout <<
cout <<
cout <<

::DisplayData(); // uses DisplayData of student class
"Marks Scored irn Subject 1: " << SublMarks << endl;
"Marks Scored in Subject 2: " << Sub2Marks << endl;
"Total Marks Scored: " << TotalMarks();

int TotalMarks()

{

return SublMarks + Sub2Marks;
}
};
void main()
{
exam annual;
cout << "Enter data for Student ..." << endl;
annual.ReadData() ; // uses exam::ReadData
cout << “Student details ...* << endl;
annual.DisplayData(); // exam::DisplayData

)
Bun

Name ? Rajkumar

Sex ? M
Age ? 24

Roll Number ? 9
Branch Studying ? Computer-Technology
Marks Scored in Subject 1 < Max:100> ? 92
Marks Scored in Subject 2 < Max:100> ? 88
Student details ...

Name: Rajkumar

Sex : M
Age : 24

Roll Number: 9
Branch: Computer-Technology
Marks Scored in Subject 1: 92
Marks Scored in Subject 2: 88
Total Marks Scored: 180

In main (), the statements

annual .ReadData() ; // uses exam: :ReadData
annual.DisplayData(); // exam::DisplayData

refer to the member functions of the class exam, since annual is its object. The statements in

ReadData () function of the class exam

student: :ReadData () ; // uses ReadData of student class
student: :DisplayData(); // uses DisplayData of student class

refers to the functions defined in the student class.

Chapter 14: Inheritance 537

14.12 Multiple Inheritance

A class can be derived by inheriting the traits of two or more base classes. Multiple inheritance refers
to the derivation of a class from several (two or more) base classes. It allows the combination of the
features of several existing, tested, and well proven classes as a starting point for defining new classes.
Multiple inheritance model is shown in Figure 14.14a and its syntax is.shown in Figure 14.14b.

Base class 1 Base class 1 weens Base class 1
? A T

Derived class

(a) Mutiple inheritance model

— derived class name
is derived from
— Inheritance type

‘——> base class1

e ———— e — e
class Derivedclass:[VisibilityMode] BaseClassl,
{

// members of derived class

// and can access members of base class
};

(b) Syntax of mutiple inheritance

Figure 14.14: Mutiple inheritance

The default visibility mode isprivate. If visibility mode is specified, it must be eitherpublic or
private. In multiple inheritance also, the inheritance of base classes with visibility mode public,
implies that the public members of the base class become public members of the derived class and
protected members of the base class become protected members of the derived class. Inherit-
ance of base classes with visibility mode private causes both the public and protected
members of the base class to become private members of the derived class. However, in both the
cases private members of the base class are not inherited and they can be accessed through member
functions of the base class.

The following declaration illustrates the concept of multiple inheritance:

class D: public Bl1, public B2 // multiple inheritance
{

private:

538 Mastering C++

int privateD;
void funcl() {}
protected:
int protectedD; // D's own features
void func2()
{ /* Null body function */ }
public:
int publicD; // D's own features
void func3();
}s
The base classes B1 and B2 from which D is derived are listed following the colon in D’s specifica-
tion; they are separated by commas.

Constructors and Destructors

The constructors in base classes can be no-argument constructors or multiple argument constructors
as discussed in the following sections.

No-Argument Constructor

Consider an example with the base classes A and B havin g constructors and the derived class ¢ which
has a no-argument constructor as in the program mud_inh1.cpp.

// mul_inh1.cpp: no-argument constructors in base and derived classes
#include <iostream.h>
class A // base classl
{
public:
A()
{ cout << "a"; }
}i .
class B // base class2
{
public:
B()
{ cout << "b"; }
}i
class C: public A, public B // derived class
{
public:
cQ)
{ cout << "¢*;)
Yi
void main{()
{
C objc;
}

Run
abc

The base class constructors are always executed first, working from the first base class to the last

Chapter 14: Inheritance 539

and finally through the derived class constructor. Since the derived class is declared as
class C: public A, public B

The constructor of the base class A is executed first, followed by the constructor of the class B and
finally the constructor of the derived class C. Hence, the above program would print abe on the screen.
If classes involved in multiple inheritance have destructors, they are invoked in the reverse order of the
constructors invocation.

Passing Parameters to Multiple Constructors

Some or all parameters that are supplied to a derived class constructor may be passed to the base
class(es) constructor. Therefore, if any base class constructor has one or more parameters, all classes
derived from it must also have constructors with or without parameters.The programmul_inh2 .cpp
illustrates the base classes A and B having constructors with arguments; their derived class C must also
have constructors.

/7 mul_inh2.cpp: constructors with arguments, must be called explicitly
#include <iostream.h>
class A // base classl
{
public:
A(char c)
{ cout << ¢; }
Yi
class B // base class2

{
public:
B(char b)
{ cout << b; 1}
Y

class C: public A, public B // derived class
{
public:
c(char cl, char c2, char ¢3): A(cl y, B(c2)
{ cout << c3; }
}i
main ()
{
¢ objc('a', 'b', 'c');
}

Run
abc

In this case, the parameters c2 and c3 are passed to the constructors of the base classes A and B
respectively. The arguments a, b and c are actually passed to the constructors of A, B, and C respec-
tively even though they are parameters to the constructor of the class C. The constructors are executed
in the order A, B, and C, hence, the above program would print abc on the screen. In general, parameters
can be passed to the constructors of the base class as shown in the following syntax:

540 Mastering C++

derived (parameter list) :basel (parameter listl), base2 (parameter list2),

The parameter lists of the base classes’ constructors may contain any expression that has global
scope (e.g., global constants, global variables, dynamically initialized global variables), as well as
parameters that were passed to the derived class’s constructor. The program mul_inh3 .cpp illus-
trates the handling of constructors with arguments in the base class and the derived class.

// mul_inh3.cpp: constructors with arguments, if not called explicitly
#include <iostream.h>
class A // base classl
{
public:
A(char ¢)
{ cout << ¢; }
}i
class B // base class?2
{
public:
B(char b)
{ cout << b; }
}:
class C: public A, public B
{
public:
C(char cl, char c2, char c3): B(c2)
{ cout << ¢3; }
}i
main ()
{
C objc('a', 'b', 'c');
}

The above program cannot be executed, since the following error is generated during compilation:
Error: Cannot find 'A::A()' to initialize base class in function C::C(char,
char, char)

If there are constructors in the base class and all of them are of type constructors with arguments,
they must be explicitly specified in the derived class constructor. Otherwise, the compiler generates a
compilation error. However, if a no-argument constructor also exists along with other constructors in
base class, the compiler invokes the no-argument constructor as a default. Note that the base classes
used in inheritance must preferably have a no-argument constructor.

Ambiguity in Member Access

Ambiguity is a problem that surfaces in certain situations involving multiple inheritance. Consider the
following cases:

« Base classes having functions with the same name

« The class derived from these base classes is not having a function with the name as those of its base
classes

+ Members of a derived class or its objects referring to a member, whose name is the same as those
in base classes

Chapter 14: Inheritance 541

These situations create ambiguity in deciding which of the base class’s function has to be referred. This
problem is resolved using the scope resolution operator as shown in Figure 14.15. The program
mul_inhd4.cpp illustrates the same.

— instance of the derived class
member specifier

——— base class in which function is defined

— Function to be invoked
in base class

e e —— e e ——— e
ObjectName . BaseClassName :: MemberName(..)

Figure 14.15: Syntax of handling ambiguity in multiple inheritance

// mul_inh4.cpp: overloaded functions in base classes
#include <iostream.h>
class A // base classl
{
char ch; // private data, default
public:
A(char c)
{ch=c;}
void show()
{
cout << ch;
}
Y
class B // base class2
{
char ch; // private data, default
public:
B(char b)
{ ch = b; }
void show ()
{
cout << ch;
}
}:
class C: public A, public B
{
char ch; // private data, default
public:
¢(char c¢l, char c2, char c¢3): A(cl)}, B(¢c2)
{
ch = c3;
}

542 Mastering C++

main ()
{
C objec('a', 'b', 'c');
// objc.show(); // Error: Field 'show' is ambiguous in C

cout << endl << "objc.A::show()

objc.A::show();

cout << endl << "objc.B::show()

objc.B::show();
}
Run

objc.A::show() a
objc.B::show() = b

In main (), the statement

- ‘

= i

objc.show(); // Error: Field 'show' is ambiguous in C

is ambiguous (whether to choose A: : show () or B: : show () ?) to the compiler resulting in a compi-
lation error. It is resolved using the scope resolution operator as follows.

objc.A: :show();

refers to the version of show () in the class a, while,

objc.B::show() ;

refers to the function in the class B. Thus, the scope resolution operator circumvents the ambiguity.

The program mul_inh5. cpp illustrates the base and derived classes, which have members with

the same name.

// mul_inh5.cpp: overloaded functions in base and derived classes

#include <iostream.h>
class A // base classl
{

char ch; // private data, default

public:
A(char ¢)
{ ch=c¢; }
void show()
{
cout << ch;
}
Y
class B // base class2
{

char ch; // private data, default
public:

B(char b)

{ ch = b; }

void show()

{

cout << ch;

}

Chapter 14: Inheritance 542

class C: public A, public B

{
char ch; // private data, default
public:
c(char cl, char c2, char c3): A(cl), B(c2)
{ ch =c3; }
void show()
{
// show(); invokes Cc::show(), leading to infinite recursion
A::show();
B::show();
cout << ch;
}
}i
main()
{
C objc('a', 'b', 'c');
cout << "objc.show() = ";
objc.show(); // refers to show() defined in the derived class C
cout << endl << "objc.C::show() = ";
objc.C::show();
cout << endl << "objc.A::show() = ";
objc.A::show();
cout << endl << "objc.B::show() = ";
objc.B::show();
}
Run

objc.show() = abc
objc.C::show() = abc
objc.A::show() = a
objc.B: :show() b

In main (), the statements

objc.show();
objc.C::show();

refer to the same version of show () defined in the class C, while
objc.A::show();
refers to the version of show () defined in the class A, and
objc.B::show();
refers to the function defined in the class B. In the derived class C, statements in show ()

A::show();
B::show();

refer to the functions defined in the classes A and B respectively.

Example on Multiple Inheritance

Consider a publishing company that publishes and markets books, whose activities are shown in Figure
14.16. Create aclasspublication that stores the title (string) andprice (float) of a publication.
Create another class sales that holds an array of three float’s so that it can record the sales of a

544 Mastering C++

particular publication for the last three months. From these two classes, derive a new class called book
that hold pages of integer type. Each of these classes should have the member functions getdata()

and display ().
publicatioﬂ L sales j
1

Lpan:{)hletT L book] L tz;pe]

I notice l

.Figure 14.16: Multiple products company

From the publication and sales classes, derive the tape class, which adds playing time in
minutes (type float). Create another class pamphlet from publication, which has no features of its
own. Derive a class notice from pamphlet class having dat. members char whom[20] and
member functions getdata() and putdata().

The program publishl . cpp models the class hierarchy shown in Figure 14.16. Note that, inher-

itance of the class publication by the classes, pamphlet, book, and tape illustrates the reuse
of the code.

// publishl.cpp: Multiple products company modeling with multiple inheritance
#include <iostream.h>

class publication // base class, appears as abstract class
{
private:
char title([40]; // name of the publication work
float price; // price of a publication
public:

void getdata()

{
cout << "\tEnter Title: *";
cin >> title;
cout << "\tEnter Price: *;
cin >> price;

}

void display ()

{
cout << "\tTitle = " << title << endl;
cout << "\tPrice = ' << price << endl;
)
}i
class sales // base class

{

private:

Chapter 14: Inheritance 545

float PublishSales[3];//sales of a publication for the last 3 months
public:

void getdatal();
void display();

void sales::getdataf()
{
int i;

for(i = 0;

1< 3; 1i++)

{
* cout << "\tEnter Sales of " << i+l << " Month: *;
cin >> PublishSales([il}:

}
}
void sales::display()
{

int 1i;

int TotalSales = 0;

for(i = 03 1 < 3; i++)
{
cout<<"\tSales of "<<i+l << " Month = " << PublishSales([i] << endl;
TotalSales += PublishSales{i];
} LT
cout << "\tTotal Sales = " << TotalSales << endl;
}
class book : public publication, public sales // derived class
{
private:
int pages; // number of pages in a book
public:

void getdata() // overloaded function

{
publication::getdata().;

.
’

cout << "\tEnter Number of Pages:
cin >> pages;
sales: :getdatal();

}
void display()
{
publication::display():
cout << "\tNumber of Pages = " << pages << endl;
sales: :display():
}
}:
c¢lass tape : public publication, public sales // derived class
{
private:

float PlayTime; // playing time in minutes

-

546 Mastering C++

public:

void getdata()

{
publication: :getdatal) ;
cout << "\tEnter Playing Time in Minute: ":
cin >> PlayTime;
sales: :getdatal() ;

}

void display ()

{
publication::display();
cout << "\tPlaying Time in Minute = " << PlayTime << endl;
sales::display();

Y

//for pamphlet class, sales class is not inherited, because, pamphlets
// cannot be sold, they are published for advertisement purpose

class pamphlet : public publication // derived class

{

}i

class notice: public pamphlet // derived, can access publics of pamphlet
private:
char whom(20]; // notice to all distributors
public:

void getdata()
{
pamphlet: :getdata(); // intern calls getdata of publication
cout << "\tEnter Type of Distributor: ";
cin >> whom;
}
void display()
{
pamphlet: :display(); // intern calls display of publication
cout << "\tType of Distributor = " << whom << endl;

Yi

void main ()

{
book bookl;
tape tapel;
pamphlet pampl;
notice noticel;

cout << "Enter Book Publication Data ..." << endl;
bookl.getdatal(); :

cout << "Enter Tape Publication Data ..." << endl;
tapel.getdata() ;

cout << "Enter Pamphlet Publication Data ..." << endl:
pampl.getdata() ;

cout << "Enter Notice Publication Data ..." << endl;

noticel.ygyetdatal):

Chapter 14: Inheritance 547

cout << "Book Publication Data To." << endl;
bookl.display ()
cout << "Tape Publication Data ..." << endl;
tapel.display():
cout << "Pamphlet Publication Data ..." << endl;
pampl.display();
cout << "Notice Publication Data ..." << endl;
noticel.display():

}

Run

Enter Book Publication Data ...
Enter Title: Mi r- -
Enter Price: 180
Enter Number of Pages: 7120
Enter Sales of 1 Month: 1000
Enter Sales of 2 Month: 500
Enter Sales of 3 Month: 800
Enter Tape Publication Data ...
Enter Title: Love-1947
Enter Price: 100
Enter Playing Time in Minute: 10
inter Sales of 1 Month: 200
enter Sales of 2 Month: 500
Enter Sales of 3 Month: 400

Enter Pamphlet Fublication Data ...
Enter Title: Advanced—Computina-95—Conf§;§g;g
Enter Price: 10

Enter Notice Publication Data ...
Enter Title: General-Meeting
Enter Price: 100
Enter Type of Distributor: Retail

Book Publication Data ...
Title = Microprocessor—xB6—Programming
Price = 180
Number of Pages = 705
sales of 1 Month = 1000
Sales of 2 Month = 500
sales of 3 Month = 800
Total Sales = 2300

Tape Publication Data ..
Title = Love-1947
price = 100
Playing Time in Minute = 10
sales of 1 Month = 200
sales of 2 Month = 500
Sales of 3 Month = 400
Total Sales = 1100

;amphlet Publication Data ..

Title = Advanced~Computingm95—Conference

548 Mastering C++

Price = 10

Notice Publication Data ...
Title = General-Meeting
Price = 100
Type of Distributor = Retail

14.13 Hierarchical Inheritance

A well established method of program design is the hierarchical model, which can be modeled better
using the concepts of inheritance. Many programming problems fall into this category. Hierarchical
model follows a top down approach by breaking up a complex class into simpler constituent classes. In
other words, in the hierarchical model, a complex class is conceptualized as being made up of simpler
classes. Figure 14.17 illustrates the hierarchical classification of vehicles in a vehicle license department
respectively. Hierarchical inheritance resembles the multilevel inheritance, in which only one derived
class path is taken into consideration.

In C++, hierarchical programs can be easily converted into class hierarchies. The superclass (base
class) includes the features that are common to all the subclasses (derived classes). A subclass is
created by inheriting the properties of the base class and adding some of its own features. The subclass
can serve as a superclass for the lower level classes again and so on. The program vehicle.cpp -
models the class hierarchy in C++ for the problem shown in Figure 14.17.

Vehicle
| |
Light Motor Heavy Motor

1 1
|

Gear Motor Non Gear Motor Passenger Goods

Figure 14.17: Classification of vehicles

/ / vehicle.cpp: Vehicle Database Hierarchical Model
#include <iostream.h>

const MAX_LEN= 25; // length of string

class Vehicle

{
protected:
char name[MAX_LEN]; // name of the vehicle
int WheelsCount; // number of wheels to vehicle
public:

void GetDataf()
{

cout << "Name of the Vehicle ? *;

Chapter 14: Inheritance

cin >> name;
cout << "Wheels ? ";
¢cin >> WheelsCount;

}

void DisplayData()
{

cout << "Name of the Vehicle : " << name << endl;
cout << "Wheels : " << WheelsCount << endl;
}

};
class LightMotor: public Vehicle
{
protected:)
int SpeedLimit;
public:
void GetData()
{
vVehicle: :GetData();
cout << "Speed Limit ? *;
cin >> SpeedLimit;
}
void DisplayData()
{
vVehicle: :DisplayDatal();

cout << "Speed Limit : " << SpeedLimit << endl;
}

}i

class HeavyMotor: public Vehicle

()
protected:

int LoadCapacity; // load carrying capacity

char permit [MAX_LEN]; // permits: state, country, international
public:

void GetDatal()

{
Vehicle: :GetData();
cout << “Load Carrying Capacity ? °
cin >> LoadCapacity;
cout << "Permit Type ? "i
cin >> permit;

’

}

void DisplayData()

(
Vehicle: :DisplayData();
cout << "Load Carrying Capacity : " << LoadCapacity << endl;
cout << "Permit: " << permit << endl;

}

549

Yi

{

550 Mastering C++

class GearMotor: pubiic LightMotor
{

protected:

int GearCount;
public:

void GetData/()
{

LightMotor: :GetData () ;
cout << "No. of Gears ? ";

’

cin >> GearCount;

}

void DisplayData ()
{

LightMotor: :DisplayData/() ;

cout << "Gears: " << GearCount << endl;
}

}i

class NonGearMotor: public LightMotor
{

public:
void GetDataf()
(LightMotor: :GetData() ;
Joid DisplayData ()
{ LightMotor: :DisplayData() ;
}

class Passenger: public HeavyMotor

protected:
int sitting;
int standing;
public:

void GetData()
{

HeavyMotor: :GetData() ;

cout << "Maximum Seats ? "

;
cin >> sitting;
cout << *"Maximum Standing ? *;
cin >> standing;

}

void DisplayData/()
{

HeavyMotor: :DisplayData() ;
cout << "Maximum Seats: " << sitting << endl;
cout << "Maximum Standing: " << standing << endl;

